B.TECH.
Regular Theory Examination (Odd Sem - III), 2016-17
SIGNAL & SYSTEM

Time: 3 Hours
Max. Marks: 100

SECTION - A

1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. (10×2=20)
 a) Verify whether the given system described by the equation is linear and time-invariant. \(x(t) = t^2 \)
 b) Find the fundamental period of the given signal.
 \[x(n) = \sin \left(\frac{6\pi n}{7} + 1 \right) \]
 c) What is the relationship between Z transform and Fourier transform.
 d) State convolution property of Z transform.
 e) Find the fourier transform of
 \[x(t) = \sin(\omega t)\cos(\omega t) \]

SECTION - B

Note: Attempt any five questions from this section (5×10=50)

2. a) Given \(x(t) = 5 \cos t, y(t) = 2e^t \), find the convolution of \(x(t) \) and \(y(t) \) using Fourier transform.

 b) If \(X(s) = \frac{2s + 3}{(s+1)(s+2)} \) find \(x(t) \) for
 a) System is stable
 b) System is causal
 c) System is non causal

 c) Determine the Z-transform of following sequences with ROC
 i) \(u[n] \)
 ii) \(-u[-n-1] \)
 iii) \(x[n] = a^n u[n] - b^n u[-n-1] \)
Define invertible system and state whether the following systems are invertible or not

i) \(y(n) = x(n) \)

ii) \(y(n) = x^2(n) + 1 \)

d) Determine the impulse response function \(h(t) \) of an ideal BPF with passband gain of \(A \) and passband BW of \(B \) Hz centered on \(f_0 \) Hz and having a linear phase response.

e) A discrete time system is given as \(y(n) = y^2(n-1) + x(n) \). A bounded input of \(x(n) = 2n \) is applied to the system. Assume that the system is initially relaxed. Check whether the system is stable or unstable.

g) Differentiate between the following:

i) Continuous time signal and discrete time signal.

ii) Periodic and aperiodic signals

iii) Deterministic and random signals

h) Show that if \(x_3(t) = a x_1(t) + b x_2(t) \), then \(X_3(\omega) = aX_1(\omega) + bX_2(\omega) \)

SECTION - C

Note: Attempt any two Questions from this section.

\((2 \times 15 = 30)\)

3. The accumulator is excited by the sequence \(x[n] = nu[n] \).

4. Accumulator can be defined by following input and output relationship.

\[y[n] = \sum_{k=-\infty}^{n} x(k) \]

Determine its output under the condition:

i) It is initially relaxed

ii) Initially \(y(-1) = 1 \)

5. State and prove initial and final value theorem for z transform.

a) If Laplace transform of \(x(t) \) is \(\frac{(s+2)}{(s^2 + 4s + 5)} \)

Determine Laplace transform of \(y(t) = x(2t-1)u(2t-1) \)

b) Use the convolution theorem to find the Laplace transform of

\[y(t) = x_1(t) * x_2(t) \]

if \(x_1(t) = e^{-3t}u(t) \) and \(x_2(t) = u(t-2) \)